500 textes (chapitres de livres, articles, brochures, etc.) en version électronique sont actuellement à disposition des utilisateurs. Les lecteurs qui rencontreraient d’éventuelles coquilles orthographiques ou ne parviendraient pas à télécharger un fichier sont invités à le(s) signaler en envoyant un courriel à l’adresse: J.-J. Ducret.
De petits textes de "présentation" peuvent accompagner les écrits mis à disposition. Parfois sans indication de date, ces textes de présentation peuvent à tout moment être modifiés ou complétés. Il est recommandé aux visiteurs qui en feraient usage de vérifier que la version utilisée par eux correspond à la dernière version présente sur le site! Toute correction ou suggestion concernant ces textes de présentation doit également être envoyée à l’adresse: J.-J. Ducret.
Le menu LIVRES permet d'accéder à la liste des ouvrages de Piaget (ou de Piaget et al.) dont la totalité ou quelques-uns des chapitres sont disponibles sur le site de la Fondation. Les chapitres de ces ouvrages sont téléchargeables sur les pages Chapitres du site. Les tables des matières de ces ouvrages sont accessibles à partir de la page Livres.
Le menu CHAPITRES permet d’accéder à la totalité ou à quelques-uns des chapitres des ouvrages dont Piaget est l’auteur ou le co-auteur, ainsi qu’exceptionnellement à des sections d’articles de Piaget (lorsqu’un article particulièrement long est décomposé en sous-documents téléchargeables individuellement).
Le menu AUTRES permet d’accéder aux articles et chapitres de Piaget publiés dans des revues, dans les volumes des Etudes d'épistémologie génétique dont il n'est pas le seul auteur ou co-auteur, ou dans des ouvrages dont il n’est pas l’éditeur, ainsi qu’à des textes "manuscrits" (non publiés) ou des textes imprimés sous forme de brochure.
Les 5 derniers textes électroniques téléchargés sont :
De la même façon que, dans le chapitre 4, Piaget a montré comment la structure des opérations de la logique des classes est plus pauvre que la structure des opérations portant sur les ensembles mathématiques (et en particulier sur l’ensemble des nombres entiers), de la même façon montre-t-il, dans ce dernier chapitre de l'Essai de logique opératoire, que l’on ne saurait réduire le raisonnement mathématique au raisonnement logique (élémentaire, c’est-à-dire inhérent à la logique des propositions). Si les inférences propres à la logique des propositions sont effectivement partie intégrante du raisonnement mathématique, elles sont complétées par des inférences (le raisonnement par récurrence notamment) dans lesquelles interviennent des liaisons étrangères au seul raisonnement logique. L’examen auquel Piaget procède ici révèle donc en quoi l’on ne saurait réduire le raisonnement mathématique au raisonnement logique (élémentaire), quand bien même le premier s’inscrit en filiation du second qu’il intègre (de la même façon que les opérations numériques, fruit de la fusion des opérations de classes et de relations, s’inscrivent en filiation de ces dernières, tout en acquérant des propriétés mathématiques et une puissance opérative inconnues des seules opérations logiques).
Toujours de façon similaire à ce qui caractérise les propriétés des (structures de) classes et (de) relations logiques comparativement aux propriétés des (structures d’) ensembles mathématiques, la généralité des raisonnements mathématiques est plus grande non seulement en extension mais également en compréhension comparativement à la généralité du raisonnement logique. La généralisation qui permet de passer de celui-ci au raisonnement mathématique offre ainsi ce caractère de généralisation constructive que détermineront les recherches sur la généralisation conduites au CIEG dans les années 1970 (JP78a).
Enfin, dans les dernières sections de ce chapitre, Piaget expose les problèmes que soulèvent les principes de non-contradiction et du tiers-exclu dans les démonstrations portant sur les ensembles non-finis. Mis en évidence par les logiciens de l’école intuitionniste (Brouwer en particulier), ces problèmes révèlent eux aussi l’écart qui existe entre le raisonnement logique élémentaire (basé sur la logique des propositions) et les raisonnements mathématiques portant sur les ensembles non-finis, hormis ceux pouvant être construits au moyen d’une procédure bien déterminée. Mais en réaction à cette découverte des limitations du raisonnement logique élémentaire, les logiciens, en poursuivant l’objectif de formalisation de la mathématique, en sont arrivés à construire des logiques plus puissantes que la logique bivalente classique (Piaget prend pour exemples 1. la logique intuitionniste trivalente, intégrant l’absurde aux côtés de vrai et du faux, 2. la logique sans négation et donc non-réversible, ou encore 3. la logique polyvalente). Ce qui montre que la seule façon de réduire de manière relativement convaincante la mathématique à la logique est d’enrichir cette dernière de manière à ce qu’elle parvienne à formaliser les processus de raisonnement ou de déduction propres aux mathématiques (en d’autres termes, à mathématiser la logique en lui incorporant un mécanisme de récurrence emprunté à l’arithmétique, à lui faire perdre son caractère purement formel au sens de détaché de tout contenu).
Ce chapitre s’achève par une interprétation originale des limitations de toute tentative de formaliser l’arithmétique et d’en démontrer la non contradiction au moyen de méthodes incluses dans le système formel utilisé (théorèmes de Gödel). Cette interprétation repose sur la thèse selon laquelle la non-contradiction logique utilisée dans un tel système formel serait trop pauvre, « trop peu affinée » pour pouvoir démontrer la non-contradiction de la théorie mathématique formalisée au moyen de ce système. En d’autres termes, qui renvoient cette fois également aux différentes structures d’opérations logico-mathématiques étudiées en psychologie génétique, les différents niveaux de réversibilité opératoire propre aux structures extensives (ou mathématiques) seraient tous plus puissants que les formes de réversibilité opératoire propres aux structures intensives, et plus particulièrement aux structures de groupements logiques (la non-contradiction d’un système découlant de sa réversibilité opératoire). Si la logique et les mathématiques peuvent en un sens être unifiée, c’est avant tout parce qu’elles sont soumises à un « principe régulateur qui les dépasse et qui est la réversibilité des mécanismes opératoires », mais une réversibilité qui se différencie selon le niveau de puissance et de fécondité constructive des opérations en jeu (le seul domaine qui échappe à ce principe étant celui des «opérations portant sur un infini non construit», qui seules sont irréversibles…)
L’ensemble des sections de la première partie de cet ouvrage qui ont pour objet les rapports entre la causalité et le développement des structures opératoires du sujet, ainsi que la première section de la deuxième partie sont disponibles ici.
Cette version électronique d'un ouvrage publié en 2000 présente une vue synoptique de l'ensemble des recherches que Piaget a dirigé au Centre international d'épistémologie génétique, de 1968 à 1979, c'est-à-dire pendant la toute dernière période de développement de son oeuvre. Alors que, de 1920 à 1967 environ, c'est l'étude des stades de développement de l'intelligence et des grandes catégories de la connaissance qui a été au coeur de ses travaux, la dernière décennie de recherches a pour l'essentiel été consacrée à l'examen des principaux mécanismes de construction de l'intelligence et des connaissances (en particulier l'abstraction réfléchissante, la généralisation complétive ou constructive, et l'équilibration majorante).
Une première version d'un résumé d'ensemble de cette dernière décennie de recherche a été publiée en 1998 dans le Bulletin de psychologie vol. 51, pp. 343- 375.
La version définitive, plus complète (et qui contient un glossaire de notions destiné à faciliter la lecture), a été rédigée et publiée dans le cadre et dans la série des Cahiers du Service de la recherche en éducation du Canton de Genève (Suisse). C'est une version électronique de cette dernière rédaction que nous mettons en ligne sur le site de la Fondation Jean Piaget. Cette version électronique est toutefois bridée (elle ne peut être que lue sur l'écran, sans possibilité de copie ni d'impression) et contient quelques défauts (mineurs) de mise en page. Pour toute personne qui souhaite disposer de la version imprimée sous forme de livre, celle-ci peut être commandée par internet sur le site du SRED (Cahier n° 7, année 2000).
Les 5 derniers textes mis à disposition sont :
Haut de page


