Fondation Jean Piaget


456 textes (chapitres de livres, articles, brochures, etc.) en version électronique sont actuellement à disposition des utilisateurs. Les lecteurs qui rencontreraient d’éventuelles coquilles orthographiques ou ne parviendraient pas à télécharger un fichier sont invités à le(s) signaler en envoyant un courriel à l’adresse: J.-J. Ducret.

De petits textes de "présentation" peuvent accompagner les écrits mis à disposition. Parfois sans indication de date, ces textes de présentation peuvent à tout moment être modifiés ou complétés. Il est recommandé aux visiteurs qui en feraient usage de vérifier que la version utilisée par eux correspond à la dernière version présente sur le site! Toute correction ou suggestion concernant ces textes de présentation doit également être envoyée à l’adresse: J.-J. Ducret.

Les textes sous la rubrique "Titre à venir" sont dans le "pipeline" des écrits en préparation ou en attente d’une autorisation de l’éditeur concerné. La plupart seront mis à disposition dans les semaines qui suivent leur annonce. D’autres textes viendront régulièrement s’ajouter à cette liste des écrits en préparation…

Le menu LIVRES permet d'accéder à la liste des ouvrages de Piaget (ou de Piaget et al.) dont la totalité ou quelques-uns des chapitres sont disponibles sur le site de la Fondation. Les chapitres de ces ouvrages sont téléchargeables sur les pages Chapitres du site. Les tables des matières de ces ouvrages sont accessibles à partir de la page Livres.

Le menu CHAPITRES permet d’accéder à la totalité ou à quelques-uns des chapitres des ouvrages dont Piaget est l’auteur ou le co-auteur, ainsi qu’exceptionnellement à des sections d’articles de Piaget (lorsqu’un article particulièrement long est décomposé en sous-documents téléchargeables individuellement).

Le menu AUTRES permet d’accéder aux articles et chapitres de Piaget publiés dans des revues, dans les volumes des Etudes d'épistémologie génétique dont il n'est pas le seul auteur ou co-auteur, ou dans des ouvrages dont il n’est pas l’éditeur, ainsi qu’à des textes "manuscrits" (non publiés) ou des textes imprimés sous forme de brochure.

Les 5 derniers textes électroniques téléchargés sont :

1964.
Six études de psychologie
Genève: Ed. Gonthier. (Contient: Le développement mental de l'enfant, 1943. La pensée du jeune enfant (texte d'une conférence donnée à Londres en 1963, publ. en premier lieu). Le langage et la pensée du point de vue génétique, 1954. Le rôle de la notion d'équilibre dans l'explication en psychologie, 1959. Problèmes de psychologie génétique, 1956 publ. en russe, Genèse et structure en psychologie de l'intelligence, 1965. Rééditions: 1966, 1968,1969, 1971, 1974, 1976, 1983, 1987, 1989, 1991.)
Texte PDF mis à disposition le 20.06.2011
 - Présentation
[Texte de présentation. Version du 2 juin 2011.]

Les six études reproduites dans cet ouvrage sont disponibles sur le site de la Fondation.

Le texte sur "Le développement mental chez l'enfant" est disponible sur la page Textes/Autres du site FJP (sous l’année 1943).

Le texte sur « La pensée du jeune enfant » est disponible sur la page Textes/Chapitres du site FJP (sous l’année 1964).

Le texte sur "Le langage et la pensée du point de vue génétique » est disponible sur la page Textes/Autres du site FJP (sous l’année 1954).

Le texte sur "Le rôle de la notion d’équilibre dans l’explication en psychologie" est disponible sur la page Textes/Autres du site FJP (sous l’année 1959).

Le texte sur "Genèse et structure en psychologie de l'intelligence" est disponible sur la page Textes/Autres du site FJP (sous l’année 1965).

Version originale française d'un article initialement publié dans la revue russe Voprossi Psykhologuii, la 5e étude, intitulée "Problèmes de psychologie génétique" (JP64a), est disponible sur la page Textes/Chapitres du site FJP (sous l’année 1964).

1946 (et collab.).
Le développement de la notion de temps chez l'enfant
Paris: Presses univ. de France, 1946. (2e éd. 1973, 3e éd. 1981.)
Texte PDF mis à disposition le 27.10.2012
 - Présentation
Les chapitres de cet ouvrage peuvent être téléchargés sur la page suivante du site de la Fondation Jean Piaget (sous l'année 1946):
http://www.fondationjeanpiaget.ch/fjp/site/textes/index_extraits_chrono3.php

1954.
Les relations entre l'intelligence et l'affectivité dans le développement de l'enfant
Paris: Centre de documentation universitaire, 195 p. (Cours à la Sorbonne 1953-1954. Voir aussi des extraits de ce cours in Bulletin de psychologie, 7, pp. 143-150, 346-361, 522-535, 699-701. )
Texte PDF mis à disposition le 06.03.2007

1950.
Introduction à l'épistémologie génétique (I).
La pensée mathématique: Avant-Propos et Chapitre 1: La construction du nombre
Paris: PUF, 1ère édition 1950, volume I. (2e édition 1973, avec une nouvelle préface).
Texte PDF mis à disposition le 02.01.2010
 - Présentation
[version 10 déc. 2009]

Après avoir brièvement décrit en avant-propos les rapports des mathématiques à la réalité physique et les problèmes épistémologiques majeurs soulevés par ces rapports, Piaget se penche sur la question de l'origine et de la signification épistémologiques du nombre.

En ce qui concerne les nombres entiers, Piaget montre comment les résultats des recherches psychogénétiques et des esquisses de modélisations logistiques qui s'y rattachent peuvent contribuer à progresser dans l'ancien débat qui opposait les tenants (dont Bertrand Russell) d'une complète réduction des nombres aux entités plus élémentaires de la logique (la classe logique pour le cardinal d'un nombre, l'ordre asymétrique logique pour le nombre ordinal) aux tenants (dont Poincaré) d'une intuition numérique irréductible aux être logiques. Des résultats de ces recherches Piaget conclut que, si le nombre n'est en effet pas entièrement réductible aux notions logiques de classe et de relation asymétrique logiques, le parallélisme de développement entre classe, relation et nombre suggère que la construction de ce dernier s'appuie en partie sur la construction des deux premières, ce qui conforte la position de Brunschvicg qui, à partir d'une analyse épistémologique serrée de la notion de nombre naturel, concluait à l'impossibilité de concevoir un nombre indépendamment de la prise en considération de la double dimension d'inclusion et de sériation qu'il renferme implicitement.

Pour Piaget d'ailleurs, si réduction il y a entre, d'un côté, le nombre et, de l'autre, la classe et la relation logiques, cette réduction n'est pas à sens unique. Certes le nombre peut être conçu comme produit d'une fusion des opérations de classification et de sériation logiques (des premières, le nombre emprunte le rôle qu'y joue la similitude ou l'équivalence réunissant sans distinction les éléments-unités dénombrés, et des secondes, l'ordre sériel établi entre ces éléments, ordre qui seul permet de les distinguer les uns des autres). Mais ces mêmes opérations de classification et de sériation peuvent tout aussi bien être conçues comme résultant d'une "dissociation" des activités d'emboîtement et de sériation intervenant dans la construction de la suite des nombres et dans l'usage du dénombrement et des opérations arithmétiques. Les groupements logiques sont certes formellement plus pauvres que le groupe des entiers numériques, ce qui tend à suggérer une antériorité (trompeuse) du logique sur l'arithmétique. Aussi la solution tracée par Piaget dans ces pages devrait-elle être nuancée de manière à inclure un résultat psychogénétique dont l'évidence s'imposera de plus en plus par la suite: la maîtrise, par l'enfant, de la quantification logique accompagnant la construction de l'inclusion logique est ou peut être plus tardive que la maîtrise de la quantification arithmétique. Ainsi un enfant de 6-7 ans peut-il porter un jugement de conservation du nombre, indice d'une déjà pleine maîtrise opératoire des premiers nombres entiers et des opérations qui les rattachent les uns aux autres, alors même que, pour lui, la question de savoir s'il y a plus d'éléments dans un sous-ensemble logique que dans l'ensemble logique dans laquelle celui-là est (visiblement ou non) inclus n'a pas ou peut ne pas avoir de sens. (Pour se faire une idée de la complexité que cette question de quantité logique peut poser aux jeunes enfants, on peut se référer au cas de la jeune Anouk, qui avait été interrogée dans le cadre des recherches longitudinales entreprises par Bärbel Inhelder et ses collaborateurs sur le développement de la pensée de l'enfant et de l'adolescent: Anouchka et l’inclusion des fleurs).

Si elle est avérée, cette antériorité de la quantification numérique élémentaire par rapport à la quantification logique implique que l'activité de réunion et d'emboîtement logiques propre à toute classification est plus simple à réaliser lorsque les propriétés distinctives qui permettent d'identifier ou de particulariser les éléments des classes emboîtées les unes dans les autres ne sont pas abstraites de la réalité empirique (comme c'est le cas pour être une tulipe, être une fleur, etc.), mais sont introduites par l'enfant de 6-7 ans qui ordonne les éléments en les dénombrant. Mais quoi qu'il en soit des nuances qu'il convient à apporter à certaines affirmations dans lesquelles Piaget semble accorder — pour des raisons qui tiennent plus de la modélisation logistique que de l'analyse psychogénétique — une sorte de primauté aux opérations logiques de classification et de sériation par rapport aux opérations arithmétiques issues de leur fusion, la thèse d'une intervention concomitante des activités (certes non nécessairement explicitée) de classification et de sériation dans la constitution du nombre opératoire reste valide, comme reste valide l'affirmation selon laquelle le nombre une fois construit contient bien des opérations qui, dans le cadre de l'activité de dénombrement, relèvent tout à la fois de l'inclusion et de la sériation, et donc de la logique des classes et de la logique des relations. Dans la suite de ce chapitre sur la pensée arithmétique, Piaget va d'ailleurs conforter cette thèse en examinant la genèse de l'axiomatisation du nombre réalisée par le mathématicien Peano à la fin du 19ème siècle.

Dans cet examen de nature épistémologique, Piaget montre comment l'absence explicite d'un recours à l'une ou l'autre des deux dimensions cardinale ou ordinale du nombre entraine la présence implicite de cette même dimension au sein des notions indéfinissable posées dans le système axiomatique proposé par le mathématicien. Au-delà de différences évidentes entre le travail d'axiomatisation réalisé par le mathématicien et les activités par lesquelles la pensée "naturelle" est amenée à construire les opérations logiques et arithmétiques (le premier tendant à exclure de le système axiomatique visé tout ce qui relève de l'activité du sujet, alors que la seconde s'emploie à opérer et à raisonner sans viser la construction d'un tel système), Piaget montre la parenté qui existe malgré tout entre la construction axiomatique et la construction psychogénétique.

D'autres thèmes sont également traité dans ce chapitre, tel que celui de la genèse historique des nombres négatifs, fractionnaires, irrationnels, mais aussi des nombres complexes et des quaternions, ainsi que du transfini (dont certaines propriétés opératoires affaiblissent «leur caractère spécifiquement numérique» et marquent «un retour partiel aux composantes logiques du nombre» (p. 129) en raison de la dissociation qui y est faite entre les ordinaux transfinis et les cardinaux transfinis. Pour chacune de ces catégories de nombres, Piaget montre le rôle fondamental joué, dans leur construction, par l'abstraction à partir des actions et de leurs coordinations, en prenant ainsi le contrepied des conceptions qui accordent un tel rôle à l'abstraction à partir de l'objet. Il montre également comment les difficultés rencontrées dans la construction des nombres négatifs, irrationnels et complexes sont liées au mécanisme de la prise de conscience, qui porte d'abord sur les résultats des actions ou des opérations, avant de porter sur ces dernières. La genèse historique de chacune de ces nouvelles catégories de nombres qui se surajoutent aux "entiers naturels" permet de faire ressortir à chaque fois le rôle prédominant de la pression organisatrice des opérations et des notions numériques préalablement acquises dans la construction, par la pensée mathématique, des nombres négatifs (et du zéro), des irrationnels, des nombres complexes, etc.

Reste alors, trois problèmes épistémologiques majeurs, dont, tout d'abord, celui de la capacité de ces nombres élaborés par abstraction à partir des coordinations d'opérations précédemment acquises à s'appliquer avec succès à la réalité physique au point que les structures qu'ils composent apparaissent comme préadaptées à cette réalité. Puisque les nombres entiers, puis rationnels, puis irrationnels, etc., ne sont pas issus par abstraction à partir des objets et de leur propriété, mais à partir des coordinations des actions puis des opérations logico-mathématiques antérieurement acquises du sujet, la solution que propose Piaget est celle de rechercher dans l'organisation biologique, point de départ des actions du sujet, et elle-même issue de la réalité physique, la raison de cette accord des nombres avec cette réalité. Mais en recourant à un mécanisme d'abstraction portant non pas sur la réalité extérieure mais in fine sur des coordinations d'actions reposant elles-mêmes sur l'organisation vitale, une telle solution ne revient-elle pas, comme la solution empiriste, à rejeter le caractère à la fois fécond et nécessaire des structures numériques? Pour rendre compte de la nécessité, Piaget évoque alors le processus d'équilibration permettant à chaque étape de construction des nombres entiers, puis irrationnels, etc., d'aboutir à des lois de composition réversible et associative des structures garantissant leur nécessité rationnelle. Quant à la fécondité, elle tient au fait que les nouvelles structures ne sont jamais mécaniquement déterminées par les précédentes, le sujet étant appelé, certes en partant de celles-ci d'en créer de nouvelles les dépassant en puissance, en étendue et en stabilité, et ceci par le moyen d'une abstraction et d'une généralisation qui sont à la fois «constructives et réflexives» (p. 141; comme l'équilibration des structures cognitives, ces deux processus d'abstraction et de généralisation portant sur les coordinations les plus générales de l'activité du sujet et non pas, comme dans les épistémologies empiristes, sur les propriétés des objets, feront l'objet d'études spécifiques et d'un examen détaillé lors de la dernière décennie de recherches dirigées par Piaget dans le cadre du CIEG).

En conclusion, ce chapitre permet au lecteur de prendre la pleine mesure de l'approche piagétienne du nombre, et du rôle essentiel qu'elle fait jouer aux actions et opérations du sujet, à leurs coordinations, ainsi qu'aux processus de construction et notamment à cette abstraction réfléchissante (ou "réflexive") et constructrice sur laquelle Piaget reviendra dans la dernière décennie de ses recherches épistémologiques.

1950.
Introduction à l'épistémologie génétique. (III) La pensée biologique. La pensée psychologique. La pensée sociologique
Paris: Presses Univ. de France. (3 volumes: I. La pensée mathématique, II. La pensée physique, III. La pensée biologique, la pensée psychologique et la pensée sociologique.)
Texte PDF
 - Présentation

[Présentation FJP, révision 8 novembre 2011]

Cet ouvrage est le dernier des trois volumes de la monumentale Introduction à l'épistémologie génétique publiée par Piaget en 1950. Il a pour objet l'épistémologie de la biologie, de la psychologie, de la sociologie, ainsi que les rapports que la logique entretient avec la psychologie et la sociologie. Il contient également les conclusions générales de ce puissant travail interdisciplinaire, conclusions dans lesquelles Piaget expose ses thèses épistémologiques couvrant l'ensemble des disciplines scientifiques (en particulier le cercle des sciences que toutes composent), ainsi qu'un index des auteurs qui donnent un aperçu de la très vaste culture scientifique et philosophique acquise par l'auteur lors de ses années de formation, puis lors des cours de psychologie, de sociologie, d'histoire des sciences et d'épistémologie qu'il a donnés à l'université de Neuchâtel tout d'abord, puis dans les universités de Lausanne et de Genève.

L'ensemble des chapitres composant les trois volumes de l'Introduction à l'épistémologie génétique sont disponibles sur la page Textes/Chapitres (année 1950) du site de la Fondation.


Les 5 derniers textes mis à disposition sont :

1961.
(EEG 14) Épistémologie des mathématiques. Partie II.
Chap. 9: Problèmes généraux de la pensée logico-mathématiques. B) Evidence, intuition et invention
In volume 14 des Études d’épistémologie génétique (partie II), pp. 205-241), Paris: Presses Universitaires de France, 1961
Texte PDF mis à disposition le 07.07.2014

1961.
(EEG 14) Épistémologie des mathématiques. Partie II.
Chap. 8: Problèmes généraux de la pensée logico-mathématiques. A) Le problème des structures
In volume 14 des Études d’épistémologie génétique (partie II), pp. 176-204), Paris: Presses Universitaires de France, 1961
Texte PDF mis à disposition le 16.06.2014

1942 (traducido al español por Luis Lam, Perú).
Las tres estructuras fundamentales de la vida psíquica: ritmo, regulación y agrupamiento
In Revue suisse de psychologie et de psychologie appliquée, n. 1-2, pp. 9-21. (Publié aussi dans Le fontionnement mental /sous la dir. E. Schmid-Kitsikis, M. Perret-Catipovic et S. Perret-Vionnet. Neuchâtel; Paris: Delachaux et Niestlé, 1991, pp. 67-86.)
Texte PDF mis à disposition le 26.05.2014

1961.
(EEG 14) Épistémologie des mathématiques. Partie II.
Chap. 7: Les leçons de l’histoire des relations entre la logique et la psychologie
In volume 14 des Études d’épistémologie génétique (partie II), pp. 149-175), Paris: Presses Universitaires de France, 1961
Texte PDF mis à disposition le 23.05.2014
 - Présentation
[Présentation FJP, version février 2014]

Ce texte est le premier des six chapitres rédigés par Piaget composant la deuxième partie du volume 14 des Etudes d’épistémologie génétique ayant pour objet l’examen des rapports entre "Épistémologie des mathématiques et psychologie" (composée elle aussi de six chapitres, la première partie du volume 14 a été rédigée par le logicien W. Beth, hormis une brève note finale sur « l’idée de machine à penser » dont J.B. Grize est l’auteur). Dans ce premier des six chapitres, après avoir retracé les trois étapes de l’histoire des relations entre la logique et la psychologie, Piaget expose les raisons pour lesquelles la résolution objective de problèmes épistémologiques relatifs aux sciences logiques et mathématiques exige le recours à la psycho(-socio)logie expérimentale et génétique —à laquelle on peut ajouter les disciplines historico-critiques et sociogénétiques— lorsque ces problèmes soulèvent des questions de faits (les vérités logico-mathématiques qui s’imposent à tous les niveaux de développement de la pensée logique et de la pensée mathématique apparaissant pour le psychologue qui les étudient comme des «faits normatifs»). C’est le cas par exemple des réponses à apporter aux questions de l’origine épistémologique des vérités logiques et mathématiques (à distinguer des questions de fondement logique recourant aux seules méthodes déductives).

1961.
(EEG 14) Épistémologie des mathématiques. Partie II.
[Introduction]
In volume 14 des Études d’épistémologie génétique (partie II), pp. 143-148), Paris: Presses Universitaires de France, 1961
Texte PDF mis à disposition le 23.05.2014




Haut de page


[…] la sensation ne comporte de signification que relativement à des actions et ce sont celles-ci qui sont à la source du savoir.