Fondation Jean Piaget


490 textes (chapitres de livres, articles, brochures, etc.) en version électronique sont actuellement à disposition des utilisateurs. Les lecteurs qui rencontreraient d’éventuelles coquilles orthographiques ou ne parviendraient pas à télécharger un fichier sont invités à le(s) signaler en envoyant un courriel à l’adresse: J.-J. Ducret.

De petits textes de "présentation" peuvent accompagner les écrits mis à disposition. Parfois sans indication de date, ces textes de présentation peuvent à tout moment être modifiés ou complétés. Il est recommandé aux visiteurs qui en feraient usage de vérifier que la version utilisée par eux correspond à la dernière version présente sur le site! Toute correction ou suggestion concernant ces textes de présentation doit également être envoyée à l’adresse: J.-J. Ducret.

Les textes sous la rubrique "Titre à venir" sont dans le "pipeline" des écrits en préparation ou en attente d’une autorisation de l’éditeur concerné. La plupart seront mis à disposition dans les semaines qui suivent leur annonce. D’autres textes viendront régulièrement s’ajouter à cette liste des écrits en préparation…

Le menu LIVRES permet d'accéder à la liste des ouvrages de Piaget (ou de Piaget et al.) dont la totalité ou quelques-uns des chapitres sont disponibles sur le site de la Fondation. Les chapitres de ces ouvrages sont téléchargeables sur les pages Chapitres du site. Les tables des matières de ces ouvrages sont accessibles à partir de la page Livres.

Le menu CHAPITRES permet d’accéder à la totalité ou à quelques-uns des chapitres des ouvrages dont Piaget est l’auteur ou le co-auteur, ainsi qu’exceptionnellement à des sections d’articles de Piaget (lorsqu’un article particulièrement long est décomposé en sous-documents téléchargeables individuellement).

Le menu AUTRES permet d’accéder aux articles et chapitres de Piaget publiés dans des revues, dans les volumes des Etudes d'épistémologie génétique dont il n'est pas le seul auteur ou co-auteur, ou dans des ouvrages dont il n’est pas l’éditeur, ainsi qu’à des textes "manuscrits" (non publiés) ou des textes imprimés sous forme de brochure.

Les 5 derniers textes électroniques téléchargés sont :

1946 (et collab.).
Le développement de la notion de temps chez l'enfant
Paris: Presses univ. de France, 1946. (2e éd. 1973, 3e éd. 1981.)
Texte PDF mis à disposition le 27.10.2012
 - Présentation
Les chapitres de cet ouvrage peuvent être téléchargés sur la page suivante du site de la Fondation Jean Piaget (sous l'année 1946):
http://www.fondationjeanpiaget.ch/fjp/site/textes/index_extraits_chrono3.php

1937.
La construction du réel chez l'enfant
Neuchâtel; Paris: Delachaux et Niestlé. (Autres éd. au contenu identique et publ. chez le même éditeur: 2e éd. 1950, 3e éd. 1963, 4e éd. 1967, 5e éd. 1973, 6e éd. 1977, 1991.)
Texte PDF mis à disposition le 03.03.2008
 - Présentation
[Les chapitres de l'ouvrage sont téléchargeables ICI (sous l'année 1937)]

Cet ouvrage appartient à la trilogie des travaux consacrés par Piaget à la genèse de l'intelligence sensori-motrice, à la construction des catégories de l'objet, de l'espace, de la causalité et du temps, ainsi qu'à la formation de la fonction sémiotique chez l'enfant entre 0 et 2 ans environ. Comme les études sur La naissance de l'intelligence chez l'enfant (1936) et La formation du symbole chez l'enfant (1945), celle consacrée à La construction du réel chez l'enfant contient un grand nombre d'observations par Piaget des conduites de ses propres enfants, systématiquement recueillies et cataloguées avec l'aide de son épouse. S'y trouvent également développées de puissantes considérations théoriques qui révèlent comment les catégories kantiennes de la pensée s'enracinent dans les conduites sensori-motrices au moyen desquelles le jeune enfant agit sur son monde, le transforme et s'y adapte.

1950.
Introduction à l'épistémologie génétique (I).
La pensée mathématique: Chapitre III: La connaissance mathématique et la réalité
Paris: PUF, 1ère édition 1950, volume I. (2e édition 1973).
Texte PDF mis à disposition le 23.01.2011

1950.
Introduction à l'épistémologie génétique (I).
La pensée mathématique: Chapitre II: La construction de l'espace
Paris: PUF, 1ère édition 1950, volume I. (2e édition 1973, avec une nouvelle préface).
Texte PDF mis à disposition le 07.01.2011
 - Présentation
[Texte de présentation — version du 30 décembre 2010.]

Piaget commence par procéder à un bref examen historique des différentes conceptions de la notion d’espace et du statut épistémologique de la géométrie. Six grandes tendances explicatives se dégagent de cet examen: trois solutions de type agénétique et trois solutions génétiques, chacune des trois solutions agénétiques ou génétiques se distinguant les unes des autres selon que le primat est attribué au sujet ou à l’objet ou selon que la perception ou la connaissance spatiale repose sur l’interaction sujet-objet. Ce tableau des six solutions se complexifie par ailleurs, étant donné que le problème de l’origine épistémologique de l’espace peut se poser soit sur le terrain de la phylogenèse de l’espèce humaine, soit sur celui de la psychogenèse (ce qui signifie par exemple que l’innéisme psychogénétique de résout en rien le problème épistémologique, une telle prise position théorique ne faisant que repousser ce dernier sur le terrain phylogénétique…)

Après avoir présenté les six solutions possibles, Piaget procède à l’examen systématique de chacune d’entre elles en les confrontant avec les données de la psychologie génétique. Il le fait d’abord sur le plan de l’espace de la perception, puis de l’espace sensori-moteur, enfin sur le plan de l’espace représentatif, en montrant pour chacun de ces niveaux le rôle crucial que jouent les activités perceptives de centration et de décentration perceptives, les actions sensori-motrices (de placement et de déplacement), et la construction des opérations spatiales. Pour chacun de ces niveaux de conduites, il prend appui sur des théories bien connues (par exemple, le sensualisme et la Gestalt en ce qui concerne l’espace perceptif), tout en montrant leurs lacunes afin de leur substituer une conception apte à intégrer l’ensemble des faits psychogénétiques connus. A titre d’exemple, signalons parmi les doctrines discutées lors de cet examen celle, à la fois aprioriste et conventionnaliste, d’Henri Poincaré, sur laquelle Piaget s’appuie en raison du rôle qu’elle attribue à la notion de groupe dans la constitution de l’espace sensori-moteur, mais dont il montre de manière très détaillée les limites à la lumière des faits découverts en psychologique génétique.

Notons que les faits recueillis par la psychologie génétique sur la construction des opérations spatiales intensives puis extensives (ou métriques) sont longuement résumés dans deux grandes sections de ce chapitre sur «La construction opératoire de l’espace» — chapitre dont les dernières sections traitent des épistémologies de Gonseth et de Brunschvicg sur l’espace et la géométrie, mais aussi des conclusions générales auxquelles conduisent la mise en parallèle des résultats des enquêtes psychogénétiques sur la construction de l’espace et des données recueillies en histoire de la géométrie.

1950.
Introduction à l'épistémologie génétique (I).
La pensée mathématique: Avant-Propos et Chapitre 1: La construction du nombre
Paris: PUF, 1ère édition 1950, volume I. (2e édition 1973, avec une nouvelle préface).
Texte PDF mis à disposition le 02.01.2010
 - Présentation
[version 10 déc. 2009]

Après avoir brièvement décrit en avant-propos les rapports des mathématiques à la réalité physique et les problèmes épistémologiques majeurs soulevés par ces rapports, Piaget se penche sur la question de l'origine et de la signification épistémologiques du nombre.

En ce qui concerne les nombres entiers, Piaget montre comment les résultats des recherches psychogénétiques et des esquisses de modélisations logistiques qui s'y rattachent peuvent contribuer à progresser dans l'ancien débat qui opposait les tenants (dont Bertrand Russell) d'une complète réduction des nombres aux entités plus élémentaires de la logique (la classe logique pour le cardinal d'un nombre, l'ordre asymétrique logique pour le nombre ordinal) aux tenants (dont Poincaré) d'une intuition numérique irréductible aux être logiques. Des résultats de ces recherches Piaget conclut que, si le nombre n'est en effet pas entièrement réductible aux notions logiques de classe et de relation asymétrique logiques, le parallélisme de développement entre classe, relation et nombre suggère que la construction de ce dernier s'appuie en partie sur la construction des deux premières, ce qui conforte la position de Brunschvicg qui, à partir d'une analyse épistémologique serrée de la notion de nombre naturel, concluait à l'impossibilité de concevoir un nombre indépendamment de la prise en considération de la double dimension d'inclusion et de sériation qu'il renferme implicitement.

Pour Piaget d'ailleurs, si réduction il y a entre, d'un côté, le nombre et, de l'autre, la classe et la relation logiques, cette réduction n'est pas à sens unique. Certes le nombre peut être conçu comme produit d'une fusion des opérations de classification et de sériation logiques (des premières, le nombre emprunte le rôle qu'y joue la similitude ou l'équivalence réunissant sans distinction les éléments-unités dénombrés, et des secondes, l'ordre sériel établi entre ces éléments, ordre qui seul permet de les distinguer les uns des autres). Mais ces mêmes opérations de classification et de sériation peuvent tout aussi bien être conçues comme résultant d'une "dissociation" des activités d'emboîtement et de sériation intervenant dans la construction de la suite des nombres et dans l'usage du dénombrement et des opérations arithmétiques. Les groupements logiques sont certes formellement plus pauvres que le groupe des entiers numériques, ce qui tend à suggérer une antériorité (trompeuse) du logique sur l'arithmétique. Aussi la solution tracée par Piaget dans ces pages devrait-elle être nuancée de manière à inclure un résultat psychogénétique dont l'évidence s'imposera de plus en plus par la suite: la maîtrise, par l'enfant, de la quantification logique accompagnant la construction de l'inclusion logique est ou peut être plus tardive que la maîtrise de la quantification arithmétique. Ainsi un enfant de 6-7 ans peut-il porter un jugement de conservation du nombre, indice d'une déjà pleine maîtrise opératoire des premiers nombres entiers et des opérations qui les rattachent les uns aux autres, alors même que, pour lui, la question de savoir s'il y a plus d'éléments dans un sous-ensemble logique que dans l'ensemble logique dans laquelle celui-là est (visiblement ou non) inclus n'a pas ou peut ne pas avoir de sens. (Pour se faire une idée de la complexité que cette question de quantité logique peut poser aux jeunes enfants, on peut se référer au cas de la jeune Anouk, qui avait été interrogée dans le cadre des recherches longitudinales entreprises par Bärbel Inhelder et ses collaborateurs sur le développement de la pensée de l'enfant et de l'adolescent: Anouchka et l’inclusion des fleurs).

Si elle est avérée, cette antériorité de la quantification numérique élémentaire par rapport à la quantification logique implique que l'activité de réunion et d'emboîtement logiques propre à toute classification est plus simple à réaliser lorsque les propriétés distinctives qui permettent d'identifier ou de particulariser les éléments des classes emboîtées les unes dans les autres ne sont pas abstraites de la réalité empirique (comme c'est le cas pour être une tulipe, être une fleur, etc.), mais sont introduites par l'enfant de 6-7 ans qui ordonne les éléments en les dénombrant. Mais quoi qu'il en soit des nuances qu'il convient à apporter à certaines affirmations dans lesquelles Piaget semble accorder — pour des raisons qui tiennent plus de la modélisation logistique que de l'analyse psychogénétique — une sorte de primauté aux opérations logiques de classification et de sériation par rapport aux opérations arithmétiques issues de leur fusion, la thèse d'une intervention concomitante des activités (certes non nécessairement explicitée) de classification et de sériation dans la constitution du nombre opératoire reste valide, comme reste valide l'affirmation selon laquelle le nombre une fois construit contient bien des opérations qui, dans le cadre de l'activité de dénombrement, relèvent tout à la fois de l'inclusion et de la sériation, et donc de la logique des classes et de la logique des relations. Dans la suite de ce chapitre sur la pensée arithmétique, Piaget va d'ailleurs conforter cette thèse en examinant la genèse de l'axiomatisation du nombre réalisée par le mathématicien Peano à la fin du 19ème siècle.

Dans cet examen de nature épistémologique, Piaget montre comment l'absence explicite d'un recours à l'une ou l'autre des deux dimensions cardinale ou ordinale du nombre entraine la présence implicite de cette même dimension au sein des notions indéfinissable posées dans le système axiomatique proposé par le mathématicien. Au-delà de différences évidentes entre le travail d'axiomatisation réalisé par le mathématicien et les activités par lesquelles la pensée "naturelle" est amenée à construire les opérations logiques et arithmétiques (le premier tendant à exclure de le système axiomatique visé tout ce qui relève de l'activité du sujet, alors que la seconde s'emploie à opérer et à raisonner sans viser la construction d'un tel système), Piaget montre la parenté qui existe malgré tout entre la construction axiomatique et la construction psychogénétique.

D'autres thèmes sont également traité dans ce chapitre, tel que celui de la genèse historique des nombres négatifs, fractionnaires, irrationnels, mais aussi des nombres complexes et des quaternions, ainsi que du transfini (dont certaines propriétés opératoires affaiblissent «leur caractère spécifiquement numérique» et marquent «un retour partiel aux composantes logiques du nombre» (p. 129) en raison de la dissociation qui y est faite entre les ordinaux transfinis et les cardinaux transfinis. Pour chacune de ces catégories de nombres, Piaget montre le rôle fondamental joué, dans leur construction, par l'abstraction à partir des actions et de leurs coordinations, en prenant ainsi le contrepied des conceptions qui accordent un tel rôle à l'abstraction à partir de l'objet. Il montre également comment les difficultés rencontrées dans la construction des nombres négatifs, irrationnels et complexes sont liées au mécanisme de la prise de conscience, qui porte d'abord sur les résultats des actions ou des opérations, avant de porter sur ces dernières. La genèse historique de chacune de ces nouvelles catégories de nombres qui se surajoutent aux "entiers naturels" permet de faire ressortir à chaque fois le rôle prédominant de la pression organisatrice des opérations et des notions numériques préalablement acquises dans la construction, par la pensée mathématique, des nombres négatifs (et du zéro), des irrationnels, des nombres complexes, etc.

Reste alors, trois problèmes épistémologiques majeurs, dont, tout d'abord, celui de la capacité de ces nombres élaborés par abstraction à partir des coordinations d'opérations précédemment acquises à s'appliquer avec succès à la réalité physique au point que les structures qu'ils composent apparaissent comme préadaptées à cette réalité. Puisque les nombres entiers, puis rationnels, puis irrationnels, etc., ne sont pas issus par abstraction à partir des objets et de leur propriété, mais à partir des coordinations des actions puis des opérations logico-mathématiques antérieurement acquises du sujet, la solution que propose Piaget est celle de rechercher dans l'organisation biologique, point de départ des actions du sujet, et elle-même issue de la réalité physique, la raison de cette accord des nombres avec cette réalité. Mais en recourant à un mécanisme d'abstraction portant non pas sur la réalité extérieure mais in fine sur des coordinations d'actions reposant elles-mêmes sur l'organisation vitale, une telle solution ne revient-elle pas, comme la solution empiriste, à rejeter le caractère à la fois fécond et nécessaire des structures numériques? Pour rendre compte de la nécessité, Piaget évoque alors le processus d'équilibration permettant à chaque étape de construction des nombres entiers, puis irrationnels, etc., d'aboutir à des lois de composition réversible et associative des structures garantissant leur nécessité rationnelle. Quant à la fécondité, elle tient au fait que les nouvelles structures ne sont jamais mécaniquement déterminées par les précédentes, le sujet étant appelé, certes en partant de celles-ci d'en créer de nouvelles les dépassant en puissance, en étendue et en stabilité, et ceci par le moyen d'une abstraction et d'une généralisation qui sont à la fois «constructives et réflexives» (p. 141; comme l'équilibration des structures cognitives, ces deux processus d'abstraction et de généralisation portant sur les coordinations les plus générales de l'activité du sujet et non pas, comme dans les épistémologies empiristes, sur les propriétés des objets, feront l'objet d'études spécifiques et d'un examen détaillé lors de la dernière décennie de recherches dirigées par Piaget dans le cadre du CIEG).

En conclusion, ce chapitre permet au lecteur de prendre la pleine mesure de l'approche piagétienne du nombre, et du rôle essentiel qu'elle fait jouer aux actions et opérations du sujet, à leurs coordinations, ainsi qu'aux processus de construction et notamment à cette abstraction réfléchissante (ou "réflexive") et constructrice sur laquelle Piaget reviendra dans la dernière décennie de ses recherches épistémologiques.


Les 5 derniers textes mis à disposition sont :

1977.
L’épistémologie génétique. Transcription d’un entretien filmé de, et avec Piaget
«Piaget on Piaget, the epistemology of Jean Piaget», Yale University media design studio, avril 1977
Texte PDF mis à disposition le 09.08.2017
 - Présentation
Texte en révision. La transcription de l’exposé de Piaget illustre quelques conclusions épistémologiques à partir d’entretiens cliniques réalisés par Ioanna Berthoud et Claude Monnier avec des enfants de différents âges. Cette transcription a été réalisée par Christophe Vilagines, de l’université d’Aix-Marseille, que nous remercions.

1974.
La prise de conscience.
Avant-propos et conclusions générales
La prise de conscience. Paris: PUF, 1974
Texte PDF mis à disposition le 23.05.2017

1948 avec Bärbel Inhelder.
La représentation de l’espace chez l’enfant. Partie II : L’espace projectif.
Chap. 11: Les transformations affines du losange et la conservation des parallèles
La représentation de l’espace chez l’enfant. Paris: PUF, 1ère édition 1948; 2e édition 1972, pp. 347-370.
Texte PDF mis à disposition le 23.05.2017

1974.
Adaptation vitale et psychologie de l’intelligence. Sélection organique et phénocopie.
Paris: Hermann.
Texte PDF mis à disposition le 09.03.2017
 - Présentation
Cet ouvrage d’une densité théorique exceptionnelle peut être considéré comme un essai de synthèse entre la théorie générale de l’équilibration cognitive établie par Piaget à travers des (et au terme de) décennies de recherches en psychologie et en épistémologie génétiques, et la théorie néo-darwinienne de la genèse des formes biologiques. Pour Piaget, le rôle attribué au hasard dans cette dernière théorie n’a de réelle portée et valeur explicative que dans la mesure où l’organisation biologique peut l’intégrer à des processus de régulations et d’équilibrations qui sont seuls à même de rendre compte de l’évolution des espèces. On reconnaît ici un équivalent organique du rôle capital que joue l’assimilation du milieu aux schèmes cognitifs dans la genèse de l’intelligence animale et humaine (genèse dans laquelle le hasard peut également intervenir dans la mesure où l’événement fortuit peut être assimilé par le schématisme acquis).

1998 Bärbel Inhelder.
Autobiographie
In Archives de psychologie, 1998, pp. 1-19.
Texte PDF mis à disposition le 18.12.2016




Haut de page


La pensée mathématique est principalement idéaliste. Construite par pure composition opératoire, jamais contredite par le réel et ne rencontrant d’autre résistance que son «objectivité intrinsèque», elle dépasse […] la réalité et l’enrichit au lieu d’être tirée de l’expérience physique.